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The coevolution of network topology and dynamics is studied in an evolutionary Boolean network model
that is a simple model of a gene regulatory network. We find that a critical state emerges spontaneously
resulting from the interplay between topology and dynamics during the evolution. The final evolved state is
shown to be independent of initial conditions. The network appears to be driven to a random Boolean network
with uniform in-degree of 2 in the large-network limit. However, for biologically realized network sizes,
significant finite-size effects are observed including a broad in-degree distribution and an average in-degree
connections between 2 and 3. These results may be important for explaining the properties of gene regulatory
networks.
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I. INTRODUCTION

Boolean networks �1–8� have been extensively studied
over the past three decades. They have applications as mod-
els of gene regulatory networks and also as models of social
and economic systems. As “coarse-grained” models of ge-
netic networks they aim to capture much of the observed
systematic behavior of networks while simplifying local
gene expression to a binary �on-off� state �9�. Despite their
simplicity, recent work has demonstrated that the model can
indeed predict the essential features of the dynamics of a
biological genetic circuit �10,11�. An important feature of
Boolean networks is that they have a continuous phase tran-
sition between so-called ordered and chaotic phases. It has
been argued �12,13� that gene regulatory networks of living
systems should be at or close to criticality, at the so-called
“edge of chaos” between the two phases, because then they
can maintain both evolvability and stability.

Many studies of critical random Boolean networks
�RBN’s� have considered networks with homogeneous topol-
ogy in which each node has the same number of inputs from
other nodes �14–22�. Accumulating experimental evidence
�23–25�, however, shows that real genetic networks do not
have homogeneous connectivity, but instead, are topologi-
cally heterogeneous. This diversity of architecture is, pre-
sumably, of great importance for the stability of living cells.
Studies of RBN’s with heterogeneous topology have analyti-
cally determined the location of the ordered to chaotic phase
transition in the large-network limit and also demonstrated
how different kinds of topology affect the stability of the
dynamics �26–29�. These studies emphasized the importance
of criticality and the influence of the network’s topology on
its dynamics, but they did not attempt to explain how critical
networks with heterogeneous topology come to exist.

A recent analysis of real gene regulatory networks �30�
has uncovered the possibility that the interactions between
genes can change in response to diverse stimuli. The result-
ing changes in the network topology can be far greater than
what is expected simply from random mutation. However,

few general principles are known about the evolution of net-
work topology. In an effort to determine what some of those
principles may be Bornholdt and Rohlf �31� studied a simple
model of neural networks known as random threshold net-
works �RTN’s�. In their study, the topology of the RTN
evolved according to a rule that depends on the local dynam-
ics of the network. According to their rule, active nodes,
whose binary states change in time, tend to lose links, while
inactive nodes, whose binary states are fixed, tend to gain
new links. They observed that with this rule for changing
network topology, in the limit of large networks, the RTN’s

evolved to a critical network with average connectivity K̄
=2. The study, therefore, discovered an interdependence be-
tween a network’s dynamics and its topology.

Motivated by these recent findings concerning gene regu-
latory networks and the behavior of RTN’s, here we investi-
gate the effect of a similar evolutionary rule on a simple
model of a genetic regulatory system. In particular, we study
an evolutionary RBN model. However, there is a fundamen-
tal difference between RTN’s and RBN’s. In RTN’s the dy-
namics of each node is controlled by the same threshold
function, while in RBN’s the dynamics of each node is con-
trolled by a randomly chosen Boolean function. Therefore, in
addition to evolving the topology of the network, we also
allow the Boolean functions used by the nodes to change. In
the context of a model of gene regulation the rule we use to
evolve the network topology assumes that there is some se-
lection pressure on an individual gene due to its activity. The
evolution causes genes that are in a frozen state of regulation
and, thus, are almost nonfunctional, to gain functionality,
while it reduces the functionality of genes that are actively
regulated. Thus this study investigates the coevolution of
network structure and network dynamics. We show that, in-
dependent of the initial topology of the network, the RBN
evolves to a critical network with a finite number of nodes
and which has a heterogeneous topology. Two different vari-
ants of our model are considered, and our principal conclu-
sions are the same for both of them. Perhaps our most im-
portant result concerns the finite-size effects of the model. As
the size of the network increases, the distribution of in-
degree connectivity becomes increasingly narrow and
sharply peaked at a value of K=2. However, for biologically
realized network sizes, we show that the final evolved critical
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state has a broad distribution of in-degree connectivity with
an average value between 2 and 3. Both of these features also
occur in real networks, suggesting that many of the topologi-
cal features of real networks may be due to their finite size.

II. DEFINITION OF MODEL

A. Dynamics of random Boolean networks

A generalized RBN consists of N randomly intercon-
nected nodes, i=1, . . . ,N, each of which has Ki in-degree
connections from nodes that regulate its behavior. The sim-
plest Boolean network model is a homogeneous RBN in
which each node has the same number of input nodes. In this
case, the connections between nodes is described by a ran-
dom directed graph G�N ,K� consisting of N nodes with uni-
form in-degree K. Figure 1 illustrates an example of G�7,3�.
Each node has a Boolean dynamical state at time t, �i�t�=0
or 1. The state of each node at time t+1 is a function of all
states of its Ki regulatory nodes at time t. Hence, the discrete
dynamics of the network is given by

�i�t + 1� = f i„�i1
�t�,�i2

�t�, . . . ,�iKi
�t�… , �1�

where i1 , i2 , . . . , iKi
are those input nodes regulating node i.

The function f i is a Boolean function of Ki variables that
determines the output of node i for all of the 2Ki possible sets
of input. Note that random Boolean functions can be gener-
ated with an “interaction bias” p by setting the output value
of the function for each set of input to be 1 with probability
p. The bias p can be interpreted as a biochemical reaction
parameter.

Given the Boolean state of each node i at time t, �i�t�, the
state vector of network is defined as ��t�= (�1�t� , . . . ,�N�t�).
The path that ��t� takes over time t is a dynamical trajectory
in the phase space of system. Because the dynamics defined
in Eq. �1� is deterministic and the phase space is finite, all
dynamical trajectories eventually become periodic. That is,
after some possible transient behavior, each trajectory will
repeat itself, forming a cycle given by

��t� = ��t + �� . �2�

The periodic part of the trajectory is the attractor of the dy-
namics, and the minimum ��0 that satisfies Eq. �2� is the
period of the attractor.

Two phases exist in RBN’s, chaotic and ordered, charac-
terized by their dynamical behavior �3,4�. One important
way of distinguishing the two phases is to measure the dis-
tribution of its attractor periods beginning with random ini-
tial states. For RBN’s in the chaotic phase the distribution of
attractor periods is sharply peaked near an average value that
grows exponentially with system size N, and for RBN’s in
the ordered phase the distribution of attractor periods is
sharply peaked near an average value that is nearly indepen-
dent of N. Critical RBN’s, however, have a broad power-law
distribution of attractor periods �14�.

B. Coevolution in random Boolean networks

In our model, the evolutionary changes of the topology of
the network are driven by the dynamics of the network and

the functions that control the dynamics of network simulta-
neously evolve due to the changes in the network topology.
Thus, this study investigates the coevolution of network to-
pology and dynamics. Similar to the one used in Ref. �31�,
the topology-evolving rule is simply that a frozen gene
grows a link while an active gene loses a link. The dynamical
functions can be changed in either an annealed or a quenched
way. The detailed algorithm is defined as follows.

�i� Start with a homogeneous RBN G�N ,K0� with uni-
form in-degree connectivity Ki=K0 for all N, and generate a
random Boolean function f i for each node i.

�ii� Choose a random initial system state ��0�. Update
the state using Eq. �1�, and find the dynamical attractor. See
the Appendix for a description of the algorithm used to find
the attractor.

�iii� Choose a node i at random and determine its average

activity Ō�i� over the attractor:

Ō�i� =
1

�
�
t=T

T+�−1

�i�t� , �3�

where T is a time large enough so that the periodic attractor
has been reached and � is the period of the attractor. If

Ō�i�=1 or 0, then its state does not change over the duration

of the attractor; it is frozen. Alternatively, if 0� Ō�i��1,
then node i is active during the attractor.

�iv� Change the network topology by rewiring the con-
nections to the node chosen in the previous step. If it is
frozen, then a new incoming link from a randomly selected
node j is added to it. If it is active, then one of its existing
links is randomly selected and removed. Note that this rewir-
ing changes Ki.

�v� The Boolean functions of network are regenerated.
Two different methods have been used:

�a� Annealed model: A new Boolean function is generated
for every node of the network.

�b� Quenched model: A new Boolean function is gener-
ated only for the chosen node i, while the others remain what
they were previously.

�vi� Return to step �ii�.

FIG. 1. A directed graph G�7,3� represents a homogeneous
RBN with seven nodes and in-degree connectivity of 3. Black and
white represent binary states “1” and “0,” respectively. The state
vector of the network is ��t�= �0,1 ,0 ,0 ,1 ,1 ,0�. The arrow on each
link indicates the direction of information flow in the network.
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The time scale for an evolutionary change of the net-
works, steps �ii�–�vi� above, is called an epoch. As we will
see, using this rewiring rule the network topology evolves
from a homogeneous one to a heterogeneous one. For sim-
plicity, all random Boolean functions are generated with p
=1/2, and therefore all Boolean functions with the same in-
degree are equally likely to be generated.

III. SIMULATION AND RESULTS

We have simulated both the annealed and the quenched
variants of the model. Both variants give very similar results,
and our principal findings are the same for both variants.
Therefore, we will present here mainly results from the an-
nealed variant. Graph �a� of Fig. 2 shows the evolution of the

average in-degree connectivity K̄= 1
N�i=1

N Ki for networks of
size N=30 in the annealed variant of the model. Four curves
are shown. They show the results obtained by beginning with
networks with different uniform connectivity K0=2, 3, 4, and
5. Each curve is the average of 15 000 independent realiza-
tions of the network evolution. This ensemble average is
indicated by the angular brackets. Each different realization
in an ensemble begins with a different random network and
with a different random initial state vector. Remarkably, de-
spite the difference in initial conditions, all four curves col-
lapse after about 200 epochs and they all approach the same
final statistical steady state that has an average in-degree

connectivity �K̄�=3.06. This occurs without tuning and sug-
gests that the final evolved topology of the network is inde-
pendent of the initial topology of the network. The steady-

state value of �K̄� depends on the size of the system as shown
in graph �b� of Fig. 2. Starting with networks that all have
the same initial uniform connectivity K0=4, but which have

different size N=30, 50, and 100, we find that larger net-

works evolve to steady states with smaller values of �K̄�.
Very similar results are obtained for the quenched version of
the model. For example, for networks with N=30 the steady-

state value of the average connectivity is �K̄�=3.08.
We have also calculated the in-degree and out-degree con-

nectivity distributions P�Kin� and P�Kout� of the evolved
RBN’s in the steady state. Initially, all nodes of the network
have a uniform in-degree K0, meaning that the in-degree dis-
tribution is a discrete delta function P�Kin�=�Kin,K0

and the
out-degree distribution is a binomial distribution. However,
through the evolutionary rewiring of the network both the
in-degree and out-degree distributions change. The in-degree
and out-degree distributions in the steady state of the an-
nealed version are shown in Fig. 3 for N=200. They are both
right-skewed bell-shaped distributions peaking at K=2. The
out-degree distribution remains a binomial distribution but
the average connectivity changes. The in-degree distribution,
although it has the same average connectivity as the out-
degree distribution, is more sharply peaked. As the size of
the network grows, the in-degree distribution becomes in-
creasingly narrow and peaked at the value Kin=2, as shown
in Fig. 4. Based on this observation, we conjecture that the
distribution tends to converge into a discrete delta function
�Kin,2 in the large-network limit N→�, indicating that the
network becomes a homogeneous RBN in that limit.

In order to probe the dynamical nature of evolved steady
states we computed the distribution P��� of steady-state at-
tractor period � in the ensemble of RBN’s simulated. The
distribution has a broad, power-law behavior for both the
annealed and quenched variants of the model. Figure 5
shows the results for networks with N=200. As long as N is
about 30 or larger, results for other size networks are similar.
As discussed above, this power-law distribution indicates
that the networks have critical dynamics. Also in the figure,
the straight line has a slope of 1.0. Thus, the critical exponent
describing the power law is approximately 1.0. This value of
the exponent is obtained for all system sizes studied in both

FIG. 2. �Color online� �a�. Evolution of the ensemble averaged
in-degree connectivity in the annealed model for networks of size
N=30. The networks in each ensemble initially start from different
uniform connectivity, K0=2, 3, 4, and 5, but reach a same statistical

steady state �K̄�=3.06. Each ensemble contained 15 000 realizations
of the network. �b�. Evolution of ensemble averaged in-degree con-
nectivity for networks of three different size N=30, 50, and 100 in
the annealed model.

FIG. 3. �Color online� Distribution of in-degree �square� and
out-degree �circle� connectivities in the annealed model. The size of
the networks is N=200.
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the quenched and annealed versions of the model. In short,
we find that a robust criticality emerges in the evolutionary
RBN’s.

Given the steady-state value �K̄�=2 in the large-network
limit N→�, we studied the finite-size effects in the model.

As shown in Fig. 6, the values of �K̄�N�� for finite N obey the
scaling function

�K̄�N�� − 2 = AN−	. �4�

Fitting the data to this function, we find that the coefficient is
A=2.50±0.06 and the exponent is 	=0.264±0.005. Thus the

value of �K̄�N�� is always larger than 2 for finite N. Note that
steady-state values of the average connectivity in random
threshold networks have a similar scaling form �31�, but in
that case, A=12.4±0.5 and 	=0.47±0.01.

IV. DISCUSSION AND CONCLUSIONS

The mechanism we find here that leads to the emergent
critical state has some similarity to self-organized criticality
�SOC� �32,33�, but is different. SOC is the tendency of
driven dissipative dynamical systems to organize themselves
into a critical state far from equilibrium through avalanches
of activity of all sizes. In our particular model, the evolution-
ary Boolean network is a dissipative dynamical system be-
cause multiple different states may map into the same attrac-
tor so that information is lost. Similar to SOC systems, our
model is driven subject to two competing rules and the net-
work organizes itself into a steady state that results from a
dynamical balance of the competition between those rules.
Moreover, the critical state is robust irrespective of initial
connectivity in both the quenched or annealed versions of the
model. The emergent critical state acts like a global attractor
in the evolution process. However, unlike the mechanism of
traditional SOC, but similar to the mechanisms that have
been shown to lead to criticality in random threshold net-
works �31� and in homogeneous Boolean networks �20�, the
self-organizing mechanism here is based on a topological
phase transition in dynamical networks.

Our results indicate that, with the rewiring rules we use,
networks in the limit N→� will evolve to have a homoge-
neous in-degree connectivity of 2. However, we find that
finite-size networks evolve to have a broadly distributed het-
erogeneous in-degree connectivity. The average in-degree
connectivity of the evolved networks is between 2 and 3 for
biologically realized network sizes. This result may be im-
portant for explaining the observed structure of real gene
regulatory networks. Real genetic networks have a number
of nodes N ranging from near 100 to thousands and typically
have a heterogeneous connectivity with an average in-degree
slightly larger than 2. For example, a recent experiment
studying the gene regulatory network of S. cerevisiae �30�
found that the network contains 3420 genes and has an av-

erage in-degree connectivity K̄in=2.1.
Finally, we note that real genetic networks exhibit an ap-

proximately scale-free out-degree distribution while the in-

FIG. 4. �Color online� Distribution of in-degree connectivity in
the annealed model. The network sizes are N=200, 400, and 1000.

FIG. 5. �Color online� Power-law distribution of steady-state
attractor period � in both annealed �circle� and quenched �square�
models for N=200 system. The dashed straight line has a slope of
1.0.

FIG. 6. �Color online� Finite-size effects in the annealed model.
The data shown are for systems of different sizes N=30, 50, 80,
100, 150, 200, and 400. The dashed straight line has a slop of 0.26.
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degree distribution is exponentially decaying �30,34�. In our
numerical study, we similarly obtain an in-degree distribu-
tion that decays faster than the out-degree distribution, but
our model does not produce a scale-free like out-degree dis-
tribution. Therefore, in order to be more realistic the model
needs to be extended by adding other factors that will cap-
ture this feature. We do not believe though that such exten-
sions will alter the principal conclusions of this paper con-
cerning the importance of finite-size effects in the evolution
of network topology in real genetic networks.
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APPENDIX

In the work presented here and in our previous studies
�20–22� the following algorithm was used to determine the
dynamical attractor.

Begin by using the initial state ��0� as the “checkpoint”
state. Then for each time T, 0�T
T1, the state is updated
using Eq. �1�. If ��T�=��0�, then the attractor is found, it

has period T, and the search ends. Note that the new state is
compared only to the checkpoint state and no other previous
states.

If after T1 updates no attractor is found, then the check-
point state is changed to ��T1�. For each time T, T1�T

T2, the state is again updated using Eq. �1�. If ��T�
=��T1�, then the attractor is found, it has period T−T1, and
the search ends.

If after T2 updates the attractor has still not been found,
then the checkpoint state is changed to ��T2�. For each time
T, T2�T
T2+Tmax, the state is again updated using Eq. �1�.
If ��T�=��T2�, then the attractor is found, it has period T
−T2, and the search ends.

Finally, if after T2+Tmax updates the attractor has still not
been found, then the state ��T2+Tmax� is used as the new
checkpoint state. If ��T�=��T2+Tmax�, T2+Tmax�T
T2

+2Tmax, then the attractor is found, it has period T−T2
−Tmax, and the search ends.

If no attractor is found after this procedure, then we stop.
In this case, the average output state in Eq. �3� is calculated
assuming that the attractor period is �=Tmax and that the
final checkpoint state ��T2+Tmax� is on the attractor.

This algorithm finds all attractors that have period less
than or equal to Tmax and that have a transient time to reach
the attractor from the initial state less than or equal to T2
+Tmax. For the results presented in this paper we used T1
=100, T2=1000, and Tmax=100 000.
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